Coverage Adjustment Methodology

Census Division General Register Office for Scotland

- Some households and persons will be missed by the Census
- Need to adjust the census to take account of this
- Produce estimates by Local Authority (LA) and agesex
- Why?
 - In 2001, ~70,000 households estimated missed
 - 200,000 persons (4%) estimated missed (mostly, but not all, from missing households)
 - this varies by age-sex and geography

- Coverage assessment:
 - Method for estimating what and who is missed
 - Based on a Survey
 - Uses standard statistical techniques
 - Produces estimates of population
 - Output database is adjusted by adding households and persons
- Quality assurance (not covered here)
 - Checking plausibility of estimates and outputs

2001 Census Undercount by Age-sex

Underenumeration of Census by agegroup

2001 Census Undercount by Area

Coverage Assessment Process Overview

The Census Coverage Survey (CCS)

- Key tool for measuring coverage
- Features:
 - Sample of postcodes
 - Measure coverage of households and persons
 - Postcodes cover whole country
 - Large 40,000 Households
 - 6 weeks after Census Day
 - Fieldwork starting 7th May 2011
 - Voluntary survey

The Census Coverage Survey (CCS)

• Features:

- Independent of census process
 - No address listing
 - Operationally independent
- Interviewer based
 - Not self completion
 - Better coverage within households
 - Application of definitions
 - Persuasion/Persistence
- Short questionnaire
 - Variables required to measure coverage
 - Low burden on public

The CCS Sample Design

- Objective: design survey to be able to estimate LA coverage
- Sample selection:
 - Divide Scotland into clusters of ~50 households
 - Most clusters are a whole Output Area (OA)
 - Select sufficient clusters (~800) to achieve sample size
 - Sample all postcodes within each selected cluster
- How are the clusters selected?
 - Grouped by Local Authority
 - expect coverage to vary by LA
 - Then Hard to count index within each LA
 - expect coverage to vary within LA by 'area characteristics'

The Hard to Count (HtC) Index

- Designed to predict census coverage
- Nationally consistent
- Based on model of 2001 response patterns to predict nonresponse for Datazones
- Uses up to date data sources:
 - Deprivation index, private rented, flats, Higher Education students, schoolchildren with English as second language
- Split into 40%, 40%, 10%, 8%, 2% distribution
 - Easiest lowest 40%, hardest top 2%
- Assume OAs/clusters have same HtC in Datazones
- Most LAs have about 3 levels

CCS Sample

- How big a sample in each LA?
- Allocation uses 2001 coverage information
- With some minimum and maximum constraints
 - Min 1 cluster per LA/HtC stratum
 - Max clusters depending on size of LA
- Drivers of sample size:
 - Population size
 - Large undercoverage in 2001
 - Variability in 2001 coverage
 - If HtC patterns changed since 2001

Matching

- Estimation based on dual system estimation
 - More on this later
- Requires individual level matching
 - Both households and persons
 - Identifies those counted by both, those missed by census and those missed by CCS
 - Accuracy is very important
 - Want to minimise 'missed matches'

Matching

- Features that permit high quality matching:
 - Census and CCS designed to allow matching
 - Collect postcode, accommodation type, address, names, dates of birth
 - Data collected on same basis (reference date and definitions)
 - High coverage in both census and CCS (expect to have a match)
 - Good data quality

Matching

- Mixture of methods Automatic and clerical
- As expect many matches, and data quality high, can reduce clerical effort using probabilistic techniques
 - Use algorithm to derive 'probability' that two records relate to the same entity
 - And then set threshold over which we accept match
- Remainder have to be viewed by clerical staff
 - Use a structured workflow in order to ensure a high accuracy rate of matches
 - Sample of matches reviewed at every stage by experts

Automatic Matching

- Automatic matching an iterative process
 - It is data driven
 - Might need more than one pass
- Outcome dependent on a number of key components:
- Blocking
 - reduces number of comparisons (usually postcode)
- Matching variables
 - Name, year of birth, month of birth, house number, accommodation type
- Comparison functions
 - spelling distance, soundex, token algorithm
 - distance matrices

Clerical Review

- Takes in the 'likely' matches that the automatic system is not allowed to make a decision on (i.e. those under the threshold)
- Clerical review of these potential matches
 - Matcher sees the data
 - And can view images
- Matches presented in descending score order (household, then individual)
 - Matcher can defer to a supervisor
- Supervisor must make a decision for all remaining pairs to complete the resolution

• Exact Match

Census			CCS		
House number	Surname of HoH	Acccom Type	House number	Surname of HoH	Acccom Type
15	DONEGAN	3	15	DONEGAN	3

Census			CCS		
Person number	Name	DOB	Person number	Name	DOB
1	NICOLA MARY DONEGAN	19121966	1	NICOLA MARY DONEGAN	19121966
2	PHILLIP ANDREW DONEGAN	1111988	2	PHILLIP ANDREW DONEGAN	1111988
3	JACK ANTHONY DONEGAN	18041992	3	JACK ANTHONY DONEGAN	18041992
4	CHLOE MARIE DONEGAN	6011995	4	CHLOE MARIE DONEGAN	6011995

• High probability matches

Census			CCS		
House number	Surname of HoH	Acccom Type	House number	Surname of HoH	Acccom Type
15	DONEGAH	3	15	DONEGAN	3

Census			CCS		
Person number	Name	DOB	Person number	Name	DOB
1	NICOLA MARY DONEGAH	19121966	1	NICOLA DONEGAN	19121966
2	PHILLIP ANDREW DONEGAN	1111988	2	PHILIP DONEGAN	1111988
3	JACK ANTMONY DONEGAN	18041992	3	JACK DONEGAN	18041992
4	CHLOE MARIE DONEGAH	6011995	4	CHLOE DONEGAN	6011995

• Low probability matches

Census			CCS		
House number	Surname of HoH	Acccom Type	House number	Surname of HoH	Acccom Type
15	DONEGAH	4	Sunnyside	DONEGAN	3

Census			ccs		
Person number	Name	DOB	Person number	Name	DOB
1	NICOLA MARY DONEGAH	19121966	1	NICOLA DONEGAN	19121966
			2	PHILIP DONEGAN	1111988
2	JACK ANTMONY DONEGAN	18041992	3	JACK DONEGAN	18041992
3	CHLOE MARIE DONEGAH	missing	4	CHLOE DONEGAN	6011995

Data After Matching

- We have for the sampled areas (about 800 clusters), household and person data:
 - Those seen by both (i.e. matched)
 - Those seen ONLY by the census
 - Those seen ONLY by the CCS
 - The total census count

Estimation

- 3 parts of the estimation process:
- Dual System Estimation
 - What is the true population in the sampled areas?
- Ratio Estimation
 - How do we estimate for the non-sampled areas?
 - How do we get enough sample to be able to make robust estimates?
- Local Authority Estimation
 - How do we get LA level estimates after getting Estimation Area level estimates?

- Dual System Estimation (DSE)
 - Used mainly for wildlife applications
 - Requires two counts of the population
- Assumptions vital to the DSE
 - Matched data with no matching errors
 - Closed population
 - Independence
 - Homogeneity
 - Non zero probabilities
- Applied at very low level to approximate assumptions
 - 'cluster' of postcodes
 - Age-sex group

- DSE estimates adjustment for those missed in both Census and CCS in each cluster by age-sex group **Counted By CCS** No TOTAL Yes Counted Yes n₁₀ n_{11} n₁₊ By Census No n_{01} n_{00} n_{0+} TOTALn₁ n₊₊ n₊₀
- The DSE count for an age-sex group in a cluster is

$$n_{++} = n_{1+} \times n_{+1} \div n_{11}$$

- DSE estimates adjustment for those missed in both Census and CCS in each cluster by age-sex group Counted By CCS Yes No TOTAL
 Counted Yes 6 3 9
 By Census No 2 n₀₀ n₀₊ TOTAL8 n₊₀ n₊₊
- The DSE count for an age-sex group in a cluster is

 $n_{++} = n_{1+} \times n_{+1} \div n_{11}$

- DSE estimates adjustment for those missed in both \bullet Census and CCS in each cluster by age-sex group **Counted By CCS** Yes No TOTAL 3 Counted Yes 6 9 By Census No 2 n_{oo} n_{0+} TOTAL8 n₊₊ n₊₀
- The DSE count for an age-sex group in a cluster is

$$n_{++} = 8 \times 9 \div 6$$

- DSE estimates adjustment for those missed in both Census and CCS in each cluster by age-sex group Counted By CCS Yes No TOTAL
 Counted Yes 6 3 9
 By Census No 2 n₀₀ n₀₊ TOTAL8 n₊₀ n₊₊
- The DSE count for an age-sex group in a cluster is $n_{++} = 8 \times 9 \div 6 = 12$

- DSE estimates adjustment for those missed in both Census and CCS in each cluster by age-sex group Counted By CCS Yes No TOTAL
 Counted Yes 6 3 9
 By Census No 2 1 3 TOTAL8 4 12
- The DSE count for an age-sex group in a cluster is $n_{++} = 8 \times 9 \div 6 = 12$

Ratio Estimation

- DSE gives an estimate of the population within each sampled cluster by age-sex
- But not for the non-sampled areas
- Need to make an adjustment for the undercount outside of sampled areas
- Ratio estimation is used to do this
 - a standard technique used in a lot of surveys
 - Used when you have data for everywhere that is highly correlated with your survey outcome
 (e.g. use height to predict weight)
 - We have a census count that is highly correlated
 - with our DSE

Ratio Estimation

- Step 1: Find the relationship between the DSE and census count in our sample
 - Expect the relationship to be different by agesex
 - And by the HtC index
- Step 2: assume the relationship holds across the non-sampled areas and predict using relationship

Estimation Areas (EAs)

- Step 1: Find the relationship between the DSE and census count in our sample
 - generally not enough clusters in most LAs by HtC to get a robust measure of the relationship (need about 7 in a LA by HtC)
 - Solution is to put LAs into groups called Estimation Areas until have enough clusters – about 70 or more in total
 - Glasgow only LA in Scotland with enough sample to be an EA in itself
 - EAs are formed from contiguous LAs
 - But we reserve option to make changes during processing

Ratio Estimation

- Relationship is obtained by ratio between DSE and census count across the clusters
 - sum of the DSE divided by sum of the census counts for each postcode cluster (slope of the line of best fit through the origin)
 - Interpreted as 'coverage weight' or adjustment factor
 - Should be greater than 1 (as we are expecting the Census to undercount the "truth")
 - Multiply by census count in non-sampled clusters

x Each point marks the DSE population and the Census count for an age-sex group in a cluster of postcodes within a hard-to-count stratum for an Estimation area.

LA Estimation

- Ratio estimator gives EA population estimates
- How to get to LA totals?
- Use 'synthetic' estimator
- Assumes the relationship at EA level holds across the LAs
 - Within HtC and broad age-sex group
 - Hence if measure coverage to be 95% for 40-44 yr old males in HtC 2 stratum
 - Assume 95% coverage for all 40-44yr old males in HtC 2 in all LAs within the EA
 - Essentially applies the adjustment factors from the ratio estimator to the LA census counts

Estimation - DSE Bias

- We noted a number of assumptions for DSE
 - key ones are independence and homogeneity
- If these are violated, it causes bias in the DSE
 - essentially, the estimates for the cluster are, on average, too low
 - the adjustment factors in the ratio estimator are then too low
- Solution bring in additional data
 - We adjust the DSEs so that they are consistent with an estimate of the number of households for the cluster

Coverage Adjustment

- Add in the records estimated to have been missed
 - Imputing missed households and the persons in them
 - Imputing persons missed from counted households
- Estimation process gives LA numbers
- For imputation want detailed characteristics
- First step is to get this from modelling CCS data
 - Model persons and households missed by census
- Models include those questions included on CCS
- Only imputing key characteristics (age, sex, alw, ethnic etc)
 - Creating 'skeleton' records
 - Non-controlled variables imputed by item imputation process

Coverage Adjustment

- Now that have weights can impute records
 - Should get close to key totals at LA level
 - Impute types of households and persons CCS found were missed
- What about getting it right locally?
 - Key to this is geographical placement
 - Solution: Use identified non-responders on address register ('Dummy' questionnaires) or late returns
- We place households into these spaces using a best fit approach
 - E.g. use try to use same accommodation type and 'copy' records from nearby