Coverage Adjustment Methodology

Census Division
General Register Office for Scotland
Coverage

• Some households and persons will be missed by the Census
• Need to adjust the census to take account of this
• Produce estimates by Local Authority (LA) and age-sex
• Why?
 - In 2001, ~70,000 households estimated missed
 - 200,000 persons (4%) estimated missed (mostly, but not all, from missing households)
 - this varies by age-sex and geography
Coverage

• **Coverage assessment:**
 • Method for estimating what and who is missed
 • Based on a Survey
 • Uses standard statistical techniques
 • Produces estimates of population
 • Output database is adjusted by adding households and persons

• **Quality assurance (not covered here)**
 • Checking plausibility of estimates and outputs
2001 Census Undercount by Age-sex

Underenumeration of Census by agegroup

Males
Females

Age group
2001 Census Undercount by Area

- Glasgow City
- Argyll & Bute
- Edinburgh, City of
- Dundee City
- Dundee City
- West Dunbartonshire
- West Lothian
- Stirling
- Falkirk
- East Ayrshire
- Fife
- Inverclyde
- Midlothian
- Renfrewshire
- Moray
- Angus
- Highland
- Aberdeenshire
- Aberdeen City
- East Ayrshire
- North Ayrshire
- South Ayrshire
- East Dunbartonshire
- Clackmannanshire
- Perth & Kinross
- Shetland Islands
- Orkney Islands
- Eilean Siar
- Dumfries & Galloway
- East Renfrewshire
- Renfrewshire
- Inverclyde
- Highland
- Moray
- Angus
- Orkney Islands
- Eilean Siar
Coverage Assessment Process Overview

- 2011 Census
- Census Coverage Survey
- Matching
- Estimation
- Quality Assurance
- Adjustment
The Census Coverage Survey (CCS)

• Key tool for measuring coverage
• Features:
 • Sample of postcodes
 – Measure coverage of households and persons
 – Postcodes cover whole country
 • Large - 40,000 Households
 • 6 weeks after Census Day
 – Fieldwork starting 7th May 2011
 • Voluntary survey
The Census Coverage Survey (CCS)

- **Features:**
 - **Independent of census process**
 - No address listing
 - Operationally independent
 - **Interviewer based**
 - Not self completion
 - Better coverage within households
 - Application of definitions
 - Persuasion/Persistence
 - **Short questionnaire**
 - Variables required to measure coverage
 - Low burden on public
The CCS Sample Design

- **Objective:** design survey to be able to estimate LA coverage

- **Sample selection:**
 - Divide Scotland into clusters of ~50 households
 - Most clusters are a whole Output Area (OA)
 - Select sufficient clusters (~800) to achieve sample size
 - Sample all postcodes within each selected cluster

- **How are the clusters selected?**
 - Grouped by Local Authority
 - expect coverage to vary by LA
 - Then Hard to count index within each LA
 - expect coverage to vary within LA by ‘area characteristics’
The Hard to Count (HtC) Index

- Designed to predict census coverage
- Nationally consistent
- Based on model of 2001 response patterns to predict non-response for Datazones
- Uses up to date data sources:
 - Deprivation index, private rented, flats, Higher Education students, schoolchildren with English as second language
- Split into 40%, 40%, 10%, 8%, 2% distribution
 - Easiest lowest 40%, hardest top 2%
- Assume OAs/clusters have same HtC in Datazones
- Most LAs have about 3 levels
CCS Sample

• How big a sample in each LA?
• Allocation uses 2001 coverage information
• With some minimum and maximum constraints
 • Min 1 cluster per LA/HtC stratum
 • Max clusters depending on size of LA
• Drivers of sample size:
 • Population size
 • Large undercoverage in 2001
 • Variability in 2001 coverage
 • If HtC patterns changed since 2001
Matching

- Estimation based on dual system estimation
 - More on this later
- Requires individual level matching
 - Both households and persons
 - Identifies those counted by both, those missed by census and those missed by CCS
 - Accuracy is very important
 - Want to minimise ‘missed matches’
Matching

- **Features that permit high quality matching:**
 - Census and CCS designed to allow matching
 - Collect postcode, accommodation type, address, names, dates of birth
 - Data collected on same basis (reference date and definitions)
 - High coverage in both census and CCS (expect to have a match)
 - Good data quality
Matching

- Mixture of methods – Automatic and clerical
- As expect many matches, and data quality high, can reduce clerical effort using probabilistic techniques
 - Use algorithm to derive ‘probability’ that two records relate to the same entity
 - And then set threshold over which we accept match
- Remainder have to be viewed by clerical staff
 - Use a structured workflow in order to ensure a high accuracy rate of matches
 - Sample of matches reviewed at every stage by experts
Automatic Matching

- **Automatic matching an iterative process**
 - It is data driven
 - Might need more than one pass
- **Outcome dependent on a number of key components:**
- **Blocking**
 - reduces number of comparisons (usually postcode)
- **Matching variables**
 - Name, year of birth, month of birth, house number, accommodation type
- **Comparison functions**
 - spelling distance, soundex, token algorithm
 - distance matrices
Clerical Review

- Takes in the ‘likely’ matches that the automatic system is not allowed to make a decision on (i.e. those under the threshold)
- Clerical review of these potential matches
 - Matcher sees the data
 - And can view images
- Matches presented in descending score order (household, then individual)
 - Matcher can defer to a supervisor
- Supervisor must make a decision for all remaining pairs to complete the resolution
Examples

- Exact Match

<table>
<thead>
<tr>
<th>Census</th>
<th></th>
<th>CCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>House number</td>
<td>Surname of HoH</td>
<td>Accom Type</td>
</tr>
<tr>
<td>15</td>
<td>DONEGAN</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Census</th>
<th></th>
<th>CCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person number</td>
<td>Name</td>
<td>DOB</td>
</tr>
<tr>
<td>1</td>
<td>NICOLA MARY DONEGAN</td>
<td>19121966</td>
</tr>
<tr>
<td>2</td>
<td>PHILLIP ANDREW DONEGAN</td>
<td>1111988</td>
</tr>
<tr>
<td>3</td>
<td>JACK ANTHONY DONEGAN</td>
<td>18041992</td>
</tr>
<tr>
<td>4</td>
<td>CHLOE MARIE DONEGAN</td>
<td>6011995</td>
</tr>
</tbody>
</table>
Examples

- High probability matches

<table>
<thead>
<tr>
<th>Census</th>
<th>CCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>House number</td>
<td>Surname of HoH</td>
</tr>
<tr>
<td>15</td>
<td>DONEGAH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Census</th>
<th>CCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person number</td>
<td>Name</td>
</tr>
<tr>
<td>1</td>
<td>NICOLA MARY DONEGAH</td>
</tr>
<tr>
<td>2</td>
<td>PHILLIP ANDREW DONEGAN</td>
</tr>
<tr>
<td>3</td>
<td>JACK ANTMONY DONEGAN</td>
</tr>
<tr>
<td>4</td>
<td>CHLOE MARIE DONEGAH</td>
</tr>
</tbody>
</table>
Examples

- Low probability matches

<table>
<thead>
<tr>
<th>Census</th>
<th>CCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>House number</td>
<td>Surname of HoH</td>
</tr>
<tr>
<td>15</td>
<td>DONEGAH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Census</th>
<th>CCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person number</td>
<td>Name</td>
</tr>
<tr>
<td>1</td>
<td>NICOLA MARY DONEGAH</td>
</tr>
<tr>
<td>2</td>
<td>JACK ANTHONY DONEGAN</td>
</tr>
<tr>
<td>3</td>
<td>CHLOE MARIE DONEGAH</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
Data After Matching

- We have for the sampled areas (about 800 clusters), household and person data:
 - Those seen by both (i.e. matched)
 - Those seen ONLY by the census
 - Those seen ONLY by the CCS
 - The total census count
Estimation

• 3 parts of the estimation process:
 • Dual System Estimation
 • What is the true population in the sampled areas?
 • Ratio Estimation
 • How do we estimate for the non-sampled areas?
 • How do we get enough sample to be able to make robust estimates?
 • Local Authority Estimation
 • How do we get LA level estimates after getting Estimation Area level estimates?
Dual System Estimation

• Dual System Estimation (DSE)
 - Used mainly for wildlife applications
 - Requires two counts of the population

• Assumptions vital to the DSE
 - Matched data with no matching errors
 - Closed population
 - Independence
 - Homogeneity
 - Non zero probabilities

• Applied at very low level to approximate assumptions
 - ‘cluster’ of postcodes
 - Age-sex group
Dual System Estimation

- DSE estimates adjustment for those missed in both Census and CCS in each cluster by age-sex group

<table>
<thead>
<tr>
<th>Counted</th>
<th>By Census</th>
<th>Yes</th>
<th>No</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counted</td>
<td>Yes</td>
<td>n_{11}</td>
<td>n_{10}</td>
<td>n_{1+}</td>
</tr>
<tr>
<td>By Census</td>
<td>No</td>
<td>n_{01}</td>
<td>n_{00}</td>
<td>n_{0+}</td>
</tr>
<tr>
<td>TOTAL</td>
<td>n_{+1}</td>
<td>n_{+0}</td>
<td>n_{++}</td>
<td></td>
</tr>
</tbody>
</table>

- The DSE count for an age-sex group in a cluster is

$$n_{++} = n_{1+} \times n_{+1} \div n_{11}$$
Dual System Estimation

• DSE estimates adjustment for those missed in both Census and CCS in each cluster by age-sex group

<table>
<thead>
<tr>
<th>Counted By CCS</th>
<th>Yes</th>
<th>No</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counted</td>
<td>Yes</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>By Census</td>
<td>No</td>
<td>2</td>
<td>(n_{00}) (n_{0+})</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>(n_{++}) (n_{++})</td>
</tr>
</tbody>
</table>

• The DSE count for an age-sex group in a cluster is

\[n_{++} = n_{1+} \times n_{+1} \div n_{11} \]
Dual System Estimation

- DSE estimates adjustment for those missed in both Census and CCS in each cluster by age-sex group

<table>
<thead>
<tr>
<th>Counted By CCS</th>
<th>Yes</th>
<th>No</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counted</td>
<td>Yes</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>By Census</td>
<td>No</td>
<td>2</td>
<td>n_{00}</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>n_{+0}</td>
<td>n_{++}</td>
</tr>
</tbody>
</table>

- The DSE count for an age-sex group in a cluster is
 \[n_{++} = 8 \times 9 \div 6 \]
Dual System Estimation

- DSE estimates adjustment for those missed in both Census and CCS in each cluster by age-sex group

<table>
<thead>
<tr>
<th>Counted</th>
<th>By CCS</th>
<th>Yes</th>
<th>No</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counted</td>
<td>Yes</td>
<td>6</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>By Census</td>
<td>No</td>
<td>2</td>
<td>n₀₀</td>
<td>n₀⁺</td>
</tr>
<tr>
<td>TOTAL</td>
<td>n⁺₀</td>
<td>n⁺⁺</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- The DSE count for an age-sex group in a cluster is
 \[n_{++} = 8 \times 9 \div 6 = 12 \]
Dual System Estimation

• DSE estimates adjustment for those missed in both Census and CCS in each cluster by age-sex group

<table>
<thead>
<tr>
<th>Counted By CCS</th>
<th>Yes</th>
<th>No</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counted Yes</td>
<td>6</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>By Census No</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL</td>
<td>8</td>
<td>4</td>
<td>12</td>
</tr>
</tbody>
</table>

• The DSE count for an age-sex group in a cluster is

\[n_{++} = 8 \times 9 \div 6 = 12 \]
Ratio Estimation

• DSE gives an estimate of the population within each sampled cluster by age-sex
• But not for the non-sampled areas
• Need to make an adjustment for the undercount outside of sampled areas
• Ratio estimation is used to do this
 • a standard technique used in a lot of surveys
 • Used when you have data for everywhere that is highly correlated with your survey outcome (e.g. use height to predict weight)
 • We have a census count that is highly correlated with our DSE
Ratio Estimation

• Step 1: Find the relationship between the DSE and census count in our sample
 • Expect the relationship to be different by age-sex
 • And by the HtC index

• Step 2: assume the relationship holds across the non-sampled areas and predict using relationship
Estimation Areas (EAs)

• Step 1: Find the relationship between the DSE and census count in our sample
 • generally not enough clusters in most LAs by HtC to get a robust measure of the relationship (need about 7 in a LA by HtC)
 • Solution is to put LAs into groups called Estimation Areas until have enough clusters – about 70 or more in total
 • Glasgow only LA in Scotland with enough sample to be an EA in itself
 • EAs are formed from contiguous LAs
 – But we reserve option to make changes during processing
Ratio Estimation

- Relationship is obtained by ratio between DSE and census count across the clusters
 - sum of the DSE divided by sum of the census counts for each postcode cluster (slope of the line of best fit through the origin)
 - Interpreted as ‘coverage weight’ or adjustment factor
 - Should be greater than 1 (as we are expecting the Census to undercount the “truth”)
 - Multiply by census count in non-sampled clusters

\[
\text{Ratio estimator for HtC group } h \text{ and age-sex group } a
\]

\[
\text{DSE} = 1.1 \times \text{Census}
\]

Each point marks the DSE population and the Census count for an age-sex group in a cluster of postcodes within a hard-to-count stratum for an Estimation area.
LA Estimation

• Ratio estimator gives EA population estimates
• How to get to LA totals?
• Use ‘synthetic’ estimator
• Assumes the relationship at EA level holds across the LAs
 • Within HtC and broad age-sex group
 • Hence if measure coverage to be 95% for 40-44 yr old males in HtC 2 stratum
 • Assume 95% coverage for all 40-44yr old males in HtC 2 in all LAs within the EA
 • Essentially applies the adjustment factors from the ratio estimator to the LA census counts
Estimation - DSE Bias

• We noted a number of assumptions for DSE
 • key ones are independence and homogeneity
• If these are violated, it causes bias in the DSE
 • essentially, the estimates for the cluster are, on average, too low
 • the adjustment factors in the ratio estimator are then too low
• Solution – bring in additional data
 • We adjust the DSEs so that they are consistent with an estimate of the number of households for the cluster
Coverage Adjustment

- Add in the records estimated to have been missed
 - Imputing missed households and the persons in them
 - Imputing persons missed from counted households
- Estimation process gives LA numbers
- For imputation want detailed characteristics
- First step is to get this from modelling CCS data
 - Model persons and households missed by census
- Models include those questions included on CCS
- Only imputing key characteristics (age, sex, alw, ethnic etc)
 - Creating ‘skeleton’ records
 - Non-controlled variables imputed by item imputation process
Coverage Adjustment

- Now that have weights can impute records
 - Should get close to key totals at LA level
 - Impute types of households and persons CCS found were missed
- What about getting it right locally?
 - Key to this is geographical placement
 - Solution: Use identified non-responders on address register (‘Dummy’ questionnaires) or late returns
- We place households into these spaces using a best fit approach
 - E.g. use try to use same accommodation type and ‘copy’ records from nearby